
Prediction of turbulent source flow between 
stationary and rotating discs 
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Results are presented from a numerical investigation of turbulent source flow 
between two discs, both of which are stationary or corotating. Parabolic f low was 
assumed and the Box Method used to obtain marching solutions of the governing 
equations. Turbulence modelling was based on extensions of classical eddy- 
viscosity/mixing-length concepts which reflect the influences of divergence of the 
mean-flow streamlines and non-isotropic Reynolds stresses due to disc rotation. 
The predictions for the rotating case are the first local results available. For the 
stationary case, earlier work has been extended by the use of empirical formulae for 
reverse transition and inclusion of the influence of streamline divergence. 
Comparisons with limited data for stationary and corotating discs show reasonable 
agreement. Although the turbulence models are probably not optimum, they 
provide an adequate basis for engineering studies of turbulent source flow 
between corotating and stationary discs until more extensive and reliable empirical 
information is available 
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Turbulent source flow between stationary or corotating 
parallel discs occurs in such practical applications as the 
manufacture of silicon chips 1 and the flow modelling for a 
computer-memory disc pack 2'a. Less exotic, but still 
interesting, applications are diffusers and multiple-disc 
pumps 4. 

Source flow between parallel discs also has 
intrinsic importance as an example of a 'complex 
turbulent flow '5 in which the effects of rotation and 
streamli,ne divergence play an important  role. Progress in 
tubulence modelling has been such that it is now 
reasonable to at tempt predictions for such flows. 
Turbulence models ultimately depend on experimental 
results. Since such information is frequently unavailable, a 
complex flow which is a perturbation of a classical thin 
shear layer is often considered (at least, in a first attempt) 
within the framework of a suitable extension of a thin- 
shear-layer turbulence model. Practical necessity and the 
expectation that useful ideas can be extracted from the 
substantial base of information and experience derived 
from thin-shear-layer studies over the past 80 years are the 
rationale behind such a treatment. 

Various phenomena occur in turbulent source 
flow between stationary or corotating discs. Depending 
on the values of the flow parameters, laminar or turbulent 
flow, reverse transition, flow reversal and both inlet and 
exit separation are observed. The possibility of separation 
or flow reversal is neglected in this analysis which uses the 
thin-shear-layer equations for axisymmetric flow with or 
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without rotation-induced swirl. Any elliptic regions near 
the entrance or exit of the flow region are assumed to 
comprise only a small part  of the total region of interest. 
Flow reversal can also occur in the interior of the flow 
region for sufficiently large radius (or rotation rate); for 
radii beyond this initiation of reverse flow, the flow must 
be treated as elliptic. 

Typically, small disc spacings are of practical 
interest so the effect of shear is important across the entire 
axial extent of the flow. Thus the flow must be modelled as 
an internal thin shear layer. This approximation ensures 
that the flow is parabolic in the radial direction and 
requires that the radial pressure-gradient be determined 
during a numerical marching process. Since the flow is 
assumed to be independent of the azimuthal coordinate in 
both the rotating and stationary cases, there are only two 
independent variables. While several suitable numerical 
methods are available, progress for the turbulent case has 
been hindered by the lack of a firm experimental base. 
However, concepts in turbulence modelling have now 
developed to the point where it is reasonable to expect 
useful information will result if turbulent source flow 
between parallel discs is treated as a perturbation of a 
classical thin shear layer with the additional effects of 
divergence of the mean-flow streamlines and non- 
isotropy of the turbulent stresses due to disc rotation. 

An accurate finite-difference method exists for the 
determination of the laminar solution for (parabolic) 
radial flow between stationary or rotating discs 6. The 
predictions for laminar radial flow with disc rotation were 
verified by Adams and Rice 7 and Pater, Crowther and 
Rice 8 by flow visualisation and measurement of the radial 
distribution of static pressure. Pater et al 8 also identified 
the region (in an appropriate parameter  space) in which 
turbulent flow would be encountered. The related 
problem of reverse transition has been discussed, for 
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stationary discs, by Narasimha and Sreenivasan’. Local 
(finite-difference) turbulent solutions for stationary discs 
have been provided by Bayley and Owen’ O for source flow 
and by Murphy, Chambers and McEligot” for sink flow. 
In both cases, simple eddy-viscosity turbulence models 
were used. Bayley and Owen also predicted the source 
flow between a stationary disc and a rotating disc with a 
turbulence model based on an isotropic mixing length, 
but non-isotropic eddy viscosities. There are no other 
local analyses of turbulent source, or sink, flow which 
include non-isotropic effects cause by disc rotation. 

stationary discs include the axial distribution of the radial 
velocity at the exit radius, obtained using a pitot tube,“,i’ 
and axial distributions of radial velocity and turbulence 
intensity obtained with a hot-wire anemometer’ 3. 
Agreement between these measurements and the 
available predictions is, at best, fair. This appears to be 
due partly to the occurrence of reverse transition. 

For rotating discs, Bakke, Kreider and Kreith13 
performed a series of hot-wire measurements including 
radial and tangential velocity profiles and turbulence 
intensities. The reliability of these measurements is some- 
what questionable and a detailed discussion is provided Measurements for turbulent flow between 
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later. The limitations of the available experimental 
evidence are, of course, a serious deterrent to the develop- 
ment of a reliable turbulence model. 

Our work is concerned with a numerical investiga- 
tion of turbulent source flow of an incompressible fluid 
between stationary and corotating discs. The flow 
parameters and geometry are assumed to be such that the 
axisymmetric parabolic-flow model is appropriate. In 
view of the limitations of the available experimental data, 
turbulence modelling was based on two extensions of 
classical eddy-viscosity/mixing-length concepts. These 
include Bradshaw's modification s of the mixing length to 
account for the extra strain rate due to streamline 
divergence and modifications to reflect the presence of 
rotation-induced, non-isotropic radial and tangential 
Reynolds stresses ~ 4. The effects of reverse transition were 
treated, where necessary, by an empirical correlation. The 
Box method 15 was used to obtain numerical solutions of 
the governing system of partial differential equations. 
Results for the turbulence models are compared to each 
other and, where appropriate, to experimental evidence. 
Reasons are suggested to explain the nature of the 
comparison. 

Mathematical problem 
The governing equations for turbulent source flow 
between stationary or rotating discs are obtained by 
applying scaling arguments to the incompressible, time- 
averaged Navier Stokes system. These arguments 
embody the well-known thin-shear-layer approximation 5 
so that only a suitable turbulence model need be added. 
With no dependence on the azimuthal coordinate 0, the 
approximate governing equations are: 

0u u ~w +;+ (I) dr ~-z =0  

t3u Ou v z l dp OZu Ou'w' 
u ~ + W~z r p dr + V~zz - -cSz (2) 

~v ~v uv ~2v ~v'w' 
U~r+WcTz+r-=V ~z2 Oz (3) 

It is convenient, for efficient numerical solution, to express 
Eqs (1)-(3) in terms of dimensionless variables scaled to be 
approximately unity in the region of interest. The choices 
of this scaling are motivated 16 by the balances already 
used to obtain the approximate equations and by the 
work of Boyd and Rice 6 and Murphy et al 11. The only 
complication is the change in the relative importance of 
centrifugal acceleration in Eq (2) between the cases of 
stationary and rotating discs. It is simple to express 
Eqs (1)-(3) in terms of the new variables: 

~U ~W 
dR + ~Z- = 0 (4) 

OU U 2 waU (Re,o)2R3V2 
U OR R ~ ~ - \ ~ e ~ /  

2 dP ~2U 2 t~ 
= - R  ~ + R ~ T + R  ~ ( - U ' W ' )  (5) 

OV OV 2UV ~2V Re~ 0 
U ~ + W ~ +  R = R ~ +  R~e, ,~(-V'W')  (6) 

T u r b u l e n t  s o u r c e  f l o w  b e t w e e n  t w o  d iscs  

The scaled system contains a Reynolds number Re o to 
characterize the throughflow between the discs, and a 
Reynolds number Re,o to reflect the influence of disc 
rotation. The 'scaling' Reynolds number Re= arises 
because of the changing influence of centrifugal 
acceleration, as reflected in the axial-length scale z*. 
When the radial inertial terms dominate, z* = h but when 
centrifugal acceleration is important, z*=  (v/~o) 1/2, which 
can be interpreted as an Ekman-layer thickness. Use of 
Re= allows both scales to be included in a single formula 
for z*. 

If the necessary boundary and starting conditions 
are added, the completed problem is suitable for a 
numerical solution. A solution is sought in an open sector 
of the R-Z  plane which is described by R>~Rs and 
0 ~< Z ~< Zc. The starting conditions reflect the coupling 
between the inlet region where a set of elliptic equations 
govern and the parabolic-solution region. Thus it is 
impossible to determine 'exact' starting conditions 
without solving the elliptic inlet-region problem. This is 
not practical and defeats the purpose of making the thin- 
shear-layer approximation to obtain a parabolic system. 
The specification of starting conditions must then be 
somewhat arbitrary, but this is not significant since their 
influence should decay rapidly as R increases. No 
experimental information is available from which to 
determine these conditions. A convenient way to establish 
the starting conditions numerically is the concept of 'local 
similarityq 7 which will be discussed later since the chosen 
numerical-solution method requires additional starting 
information over that needed for Eqs (4)-(6). 

The condition used to solve for dP/dR at each 
radial station is an integral version of conservation of 
mass, ie, for R ~>Rs: 

Zc 

f U(R,Z) dZ = (7) Zc 

0 

Numerical integration can be avoided if a stream function 
F(R,Z) defined by: 

OF OF 
U = - -  IV-- - - -  (8) 

#Z dR 

is introduced since Eq (7) then reduces to: 

F(R, Zc) - F(R,O) = Z c (9) 

Moreover Eq (4) is automatically satisfied by the use of a 
stream function. A set of equations for F and V can be 
obtained by using the definitions of Eq (8) in Eqs (5) and 
(6). Finally the boundary conditions require no-slip and 
no penetration at Z = 0 and symmetry at Z = Z~ for R ~> Rs. 

Turbulence modelling 
For the problem of interest, the available experimental 
information is inadequate to support the adoption of a 
'sophisticated' turbulence model. Hence heuristic 
arguments and broad comparisons with related work are 
the only available avenue for the development of models 
for - U'W' and - V'W'. Such ideas led to the philosophy 
of treating these terms by extending classical mixing- 
length/eddy-viscosity concepts. The results should be 
adequate for engineering studies of parabolic turbulent 
flows between parallel discs. 
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Introduction of an eddy viscosity is common in the 
study of classical thin shear layers. Extensions of a mixing- 
length turbulence model have been successful in a variety 
of problems. In fact, for some flows, the more elaborate 
k - e  model does not provide significantly better 
predictions than an extended mixing-length model. 
Examples include the boundary layer on a spinning 
cone ~ 8 and flow over a single rotating disc 19. This success 
is encouraging with regard to our decision to extend the 
mixing-length model here. 

The presence of two important Reynolds stresses 
means that the usual definition for the eddy viscosity is 
inadequate. The first extension of the classical mixing- 
length model defines two eddy viscosities er and eo: 

0u 
u'w' - (10a) - -  __ ~ r ~ z  

~V 
- v ' w '  = e0~?~ (10b) 

The notation is that of Eqs (1) to (3). While there have been 
successes 2°'2~ with an isotropic model (er = ~0), arguments 
in favour of anisotropic models for flows with rotation can 
be made a4'22. Thus an anisotropic model based on a 
proposal by Koosinlin and Lockwood 14 is used. For  x = r 
or 0, a mixing length lx is defined by: 

12[(3u'~ 2 ['#v'~2] '/2 ?.u, (11) 

and the distribution of lx is: 

I xzDx xz <~2~ 

, ~ c z  >~ 
(12) 

where Dx is a version of the familiar van Driest damping: 

D ,  = 1 - e x p ]  . (13)  

The characteristic length for Ix was chosen as h/2 in 
accordance with previous work on stationary discs ~°. 
This model is anisotropic only in the wall layer where the 
damping functions D r and Do are employed. Non- 
isotropic effects induced by rotation are expected to have 
greatest influence in this region. 

The turbulence modelling must also reflect the 
extra strain rate associated with the streamline divergence 
caused by the radial increase of flow area. Bradshaw's 
hypothesis 5 that an increase in the mixing length should 
result has been verified experimentally for axisymmetric 
flow over a cone 23. For  the present problem, his proposal 
for a simple modification to model this increase takes the 
form: 

/ ,.,/r "~ Ix 1 +~  - -  
lx~ = ~?u,/~?z) (14) 

where lxo is the mixing length from Eq (12), u/r is the extra 
strain rate and ct is an empirical constant. Following 
Bradshaw, the magnitude of the 'correction' is limited by: 

u/r ~<0.1 
Ou,/ Oz 

This restriction is introduced due to the limited range over 
which the linear expression, Eq (14), can be expected to 
hold; it also ensures a finite mixing length at Z = Zc where 
t3u,/t3z = 0 due to the symmetry boundary conditions. 

Four  empirical constants (A*, K, 2, ~) appear  in 
Eqs (11)-(14). The constants A + and K are given the widely 
used values, A ÷ =26 and x=0.4.  However, reported 
values for 2 show a dependence on the flow situation 24. 
For  plane wall layers which have an inviscid outer flow, 2 
is typically 0.07 to 0.09 while for a parallel-plate duct in 
which wall layers merge at the duct centre line, 
experiments 2s found 2 ranged from 0.10 to 0.15, with the 
higher value associated with merged wall layers; 2 = 0.14 
can be predicted from the work of Cebeci and Chang 26. 
Due to the presence of merged wall layers in source flow 
between parallel discs, 2 was chosen as the mid-range 
value of 0.12. The remaining constant was given the value 
ct= 10 in accordance with Bradshaw's recommendation. 
The sensitivity of the predictions to these choices is 
discussed later. 

The anisotropic turbulence model defined by 
Eqs(10) (13) will be referred to subsequently as tma. 
Another anisotropic model based on a suggestion by 
Rotta 27 was also implemented, but the results were less 
satisfactory than those obtained with tma 16. An isotropic 
model, denoted by tmi, was also considered. Such a model 
has er = e0 so that lr = 1o and hence D r = Do. Thus tmi need 
only replace Eq (13) by: 

V _  z + (~+)'12-1 
D = 1 - exp[ A +  J (15) 

The B radshaw modification 1" was retained in tmi as we re 
the chosen values for the empirical constants. 

A detailed examination of the experimental results 
for source flow between stationary discs suggests the 
occurrence of reverse transition 9 in certain cases. This 
phenomenon cannot be predicted with tma or tmi and, in 
fact, there is no fundamental theory upon which to base a 
prediction method for reverse transition. Narasimha and 
Sreenivasan 9 suggested, as a working definition, that 
reverse transition has occurred when the mean-velocity 
distributions may be predicted without using a turbulence 
model, even though significant fluctuations may be 
present. In practice, information needed to use this 
definition is available only from measurements of velocity 
profiles. Moller 12 has measured exit-velocity 
distributions for source flow between stationary discs for 
a range of local Reynolds number  Re. His data begin to 
deviate from a turbulent power-law profile for Re = 5250 
and 3050, while it can be fitted by a parabola for Re = 1000 
and 1300, indicating that reverse transition occurs, 
roughly, over the range 5000 ~> Re >~ 1000. 

The influence of reverse transition is included by 
introducing an 'intermittency' y which multiplies the eddy 
viscosity for tmi. This intermittency is unity for fully- 
turbulent flow and decreases as Re decreases according to 
a form suggested by an empirical correlation for the decay 
of turbulent kinetic energy in reverse transition 9. If reverse 
transition is assumed to begin at R = R c r  where Re =Recr 
and continues until the flow is essentially laminar at 
Re = Rejoin, the intermittency is, for Re ~ Re.: 

7 = e x p [ - c ( R % - R e ) 3 (  1 R!,:r)]" (16) 
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The empirical constant c is specified by requiring that 
= exp ( -3 )  at Re = Re,am. From Moller's data discussed 

above, Recr= 5000 and Re~,m = 1000 were chosen. 

Solution method 

A sequence of related parabolic problems for which only a 
numerical solution is practical has been established. The 
Box method ~ 5 was chosen because its generality makes it 
readily adaptable to new situations; it provides both a 
method for establishing the appropriate difference 
equations and a solution method. The key to the method 
is reformulation of the governing equations as a system of 
first-order equations. Thus the second derivatives which 
appear due to the cross-stream diffusion terms require the 
introduction of additional unknown functions: 

~U 
S = - -  (17a) 

0Z 

OV 
T= - -  (17b) 

OZ 

The momentum equations which result from the use of 
Eq (8) in Eqs (5) and (6) are then transformed to a system 
of five first-order equations: 

F ' =  U (18a) 

U'=S (18b) 

V '=  T (18c) 

-- U 2 (Re,, "~ 2 u63U 
R[(I+e~)S]'  R \Re~}  R3V2+ OR 

0F 2dP 
c5~S + R ~ (18d) 

2UV OV ~F 
R[(1 + e f ) T ] '  = ~ -  + U c ~ -  ~ T  (18e) 

where prime denotes partial differentiation with respect to 
Z. 

The boundary conditions can be expressed in a 
form that is consistent with Eqs (18) using Eqs (8) and (17) 
to obtain: 

F(R,O) = 0 (19a) 

U(R,0)=0 (19b) 

V(R,O) = 1 (19c) 

F(R,Zc)=Zc (19d) 

S(R,Zc)=O (19e) 

T(R,Zc)=O (19f) 

With no loss of generality, F(R,0)= 0 was chosen. Even 
though the turbulence models do not require any 
additional starting information, starting conditions must 
be specified for all dependent variables because the Box 
method uses two-point averages in the streamwise 
direction. The determination of these starting conditions 
at R =Rs is discussed below. The choice for pressure at 
R = Rs is arbitrary. 

The complete system of non-linear difference 
equations is solved iteratively by Newton's method at 
each radial station. Following usual practice: 5, e l  and e~ + 
are lagged during this process, ie their values for the i 

Turbulent source f low between two discs 

iteration are used in the (i + 1) iteration. Experience has 
shown that the wall shear stress is a sensitive indicator of 
convergence 15. Hence the convergence criterion for the 
inner iterations required that successive values of S 
evaluated at the wall change by less than 0.1%. The 
pressure gradient was determined by an outer iteration 26 
using the boundary condition given as Eq(19d). The 
linear system solved within each Newton iteration has a 
special block-tridiagonal form which permits an efficient 
solution. This form was obtained in a manner similar to 
the usual two-dimensional formulation 28. Some 
additional, but straightforward, algebraic manipulation 
was required to treat the 5 × 5 matrices which result from 
Eq (18). The difference and matrix equations are listed 
e l s e w h e r e  ~ 6. 

Starting conditions at Rs are determined by a 
local-similarity 1~ approximation to Eqs (18) in which the 
radial variation ofF,  S, T, U and V is ignored. The solution 
procedure is identical to that followed at each radial step 
in the marching solution, including the simultaneous 
determination of the pressure gradient. Initial estimates 
for the dependent variables and turbulence quantities for 
the iteration within the local-similarity solution were 
determined from arbitrarily specified velocity 
distributions; parabolic or power-law profiles were 
adequate. A partial example of the computed starting 
conditions is shown in Fig. 6. 

Since starting conditions based on local similarity 
are only approximate solutions of the governing 
equations, oscillations between marching steps appear in 
the computed solution. Cebeci 29 recommends the use of 
small marching steps near Rs and a smoothing procedure 
to remove these oscillations. Computations begin at 
R = Rs, and marching steps are taken to R = Rs + AR and 
R = Rs + 2AR. Averaging between adjacent radial stations 
provides distributions of all variables at R = R~ + (1/2)AR 
and R =Rs+(3/2)AR. These two distributions are then 
averaged to obtain new, 'smoothed' profiles at 
R = Rs + AR. The second-order accuracy of the method is 
retained in this averaging procedure 3°. Approximately 
ten marching steps with small AR are taken in the starting 
region. These initial steps are typically AR = 0.01 Rs, and 
the step size is then gradually increased;it can be as large 
as AR = Rs at large radius, eg at R = 10Rs. A variable axial 
grid spacing as suggested by Keller and Cebeci 15 was 
employed. Approximately twenty axial grid points 
provide 1% accuracy. 

The numerical procedure is very efficient with only 
modest core storage requirements. The code was executed 
on an IBM 3032/4341 system, with computation times of 
the order of one second per radial station. Typically two 
inner iterations within each of five outer iterations were 
required in each radial marching step. The difference in 
computation time for various flow cases or turbulence 
models are insignificant. 

Results 

To test the computer implementation of the turbulence 
modelling and solution method, two previously studied 
flows were examined. In the first, turbulent developing 
flow in the entrance of a parallel-plate duct 26, good 
agreement with the earlier work was achieved. Since the 
numerical procedure can easily treat laminar flows as a 
special case, the general computer code was next used to 
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solve the problem of laminar source flow for both 
stationary and rotating discs. The results obtained are 
also in good agreement with earlier work 6. 

Several sets of data for turbulent source flow 
between stationary discs appear in the literature. 
Measurements of the radial static-pressure distribution 
were made by Moller I 2, Bayley and Owen 1 o and Bakke et 
al ~3. Moller and Bayley and Owen also determined the 
axial distribution of radial velocity at the exit of the discs 
using a pitot tube. Bakke et al completed several axial 
traverses for radial velocity at various radial locations 
using a hot-wire anemometer. 

The data of Bayley and Owen and some of 
Moller's data are at Reynolds numbers large enough that 
reverse-transition effects should not be significant. In each 
case the accuracy of the pitot-tube measurement is 
unknown because no uncertainty is given. The effect of the 
exit region upon these measurements at the outer radius is 
also unknown. Nevertheless, these data represent the only 
test of the constants in the turbulence model tmi. 
Predictions using tmi are compared with the data of 
Bayley and Owen in Fig 1. For  ~ = 0, which eliminates the 
Bradshaw modification 5 for extra strain rate, the 
agreement is poor. An important  conclusion is that this 
modification should be included in the turbulence 
modelling. Examination of the sensitivity of predictions 
using tmi to variations in the empirical constants ~ 6 shows 
them to be quite insensitive to changes in x and A + while 
the values for2 and ~ are more important. The choices for 
the constants in tmi appear to be reasonable although 
they are probably not optimum. 

Bakke et al present velocity distributions for five 
different cases of source flow between stationary discs. 
Measurements were made by inserting a hot-wire probe 
into the flow region between the discs and the influence of 
obstruction by this probe is unknown, but it is likely 
significant. Evidence for this conclusion is provided by 

Nguyen, Ribault and Florent 31, who, for laminar flow 
between a fixed disc and a rotating disc, show a large 
dependence of their experimental results on the 
anemometry technique used. The finite size of any probe 
also makes it difficult to obtain data near a wall and heat- 
transfer effects between the probe and the disc surface 
change the nonlinear calibration of the probe. At the 
measuring location nearest the disc, velocities of 0.3 m/s 
(1 ft/s) were measured by Bakke et al even with no source 
flow. The 'no-flow' readings were subtracted from the 
measurements with source flow to account for this error. 
Thus Bakke et al suggested that velocity measurements 
within 0.038cm (0.015in) of the disc surface have 
considerable error. Therefore their data are not reliable 
for Z/Zc<O.15 for r jh=9 .050  and for Z/Zc<O.IO for 
r,/h = 6.033. This explains some of the unusual behaviour 
in the velocity distributions near the disc surface. For 
emphasis, these unreliable data are denoted by solid 
symbols in the pertinent figures. 

An additional feature of the apparatus used by 
Bakke et al is apparent in the measured velocity 
distributions. Because the axial inlet flow at the centre of 
their horizontal discs was introduced from only the 
bottom, a strong asymmetry extended, in some cases, over 
a significant portion of the flow region. Obviously such 
results cannot be compared to our predictions which 
assume a symmetric velocity profile. 

In spite of these difficulties, the overall scarcity of 
pertinent data makes it worthwhile to attempt to draw 
some useful information from the data of Bakke et al. 
However, since Re at the exit for this data lies in the range 
1000 < Re < 3000, the effects of reverse transition should 
be included. Predictions for source flow between 
stationary discs with and without reverse transition are 
compared with the measurements of Bakke et al in Fig 2; 
in Fig 2(c), Re is large enough that 7 is nearly one and the 
results with and without intermittency are 
indistinguishable in the scale of the figure. Omitting the 
region near the wall where the data is not reliable, the 
agreement with the predictions which include reverse 
transition is satisfactory. The predictions correctly follow 
the behaviour of the data with increasing effects of reverse 
transition at smaller Re. This agreement is, at least, 
indirect evidence that the turbulence modelling embodied 
in tmi is an adequate basis for engineering studies of 
turbulent source flow between stationary discs. 

The data of Bakke et al for the radial velocity 
component are normalized by the centre line values; since 
these values are not available, it is not possible to make 
more precise comparisons. Tabulated values of U(R,Z~) 
for our predictions are available from the authors upon 
request. 

An extensive set of measurements for turbulent 
source flow between rotating discs was presented by 
Bakke et al. Their measurements for flow between 
rotating discs are subject to the same limitations as the 
measurements for stationary discs discussed earlier. 
Predictions for three typical cases which span the range of 
the data of Bakke et al are compared with measurements 
in Fig 3. As expected, in the case with the smallest Re,,, 
(Fig 3(a)), anisotropic effects are least important;  even the 
isotropic predictions (tmi) are reasonable. As Re,,j 
increases with co (Fig 3(b)) or h (Fig 3(c)), the anisotropic 
predictions using tma more nearly predict the shape of the 
measured distributions. The predictions of tangential 
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velocity and pressure are relatively insensitive to the 
turbulence model as shown in Figs 4 and 5. The pressure 
distribution does not reflect local conditions and is not, by 
itself, an adequate test of the turbulence modelling. Bakke 
et al, in fact, obtained good agreement for pressure using 
an integral method. Truman 16 shows that the empirical 
constants chosen earlier remain reasonable for rotating 
discs. 

Because the parameter ranges for the data are 
limited, a series of predictions over a larger range of the 
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discs. Solid symbols denote unreliable data. 
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(b) ReQ = 857.5, r,/h = 6.033, 1780 < Re < 5350; 
(c) Re e =850.7, r , /h= 9.050, 2660< Re< 7960 

Turbulent source f low between two discs 

flow parameters was made. The parameter ranges for 
these predictions were: Re o = 200 to 5000; Re,, = 100, 200 
and 500, and rJh =5, 10 and 20. The values of ReQ were 
chosen to be large enough that reverse-transition effects 
should be unimportant. This conclusion is consistent with 
the experimental transition results of Pater et al s. 
Moreover, the experimental results of Bakke et al show 
that, in general, turbulence intensities increase with 
radius, indicating that rotation eliminates, or at least 
delays, reverse transition. The ranges of Re,o and spacing 
ratio r~/h include the available data and extend to larger 
values. These predictions are sufficient to demonstrate 
trends in the flow behaviour with variations in the 
parameters. 

The flow behaviour with increasing radius is 
similar when the ratio ReQ/Re~ and the spacing ratio rJh 
are held constant; this is a result of the definition of the 
dimensionless radius R. For  small Reo/Re ~ as in Fig 6, the 
effects of rotation become significant as R increases. In 
fact, for R/Rs>7, the flow reversal mentioned earlier 
(U(R,Zc) <0) occurs and the parabolic model is invalid. 
When ReQ/Re,.~ is large, however, the effects of rotation are 
not very important even for R/Rs = 10. Fig 6 also shows 
that, when Reo/Re,,, rjh and R/R~ are duplicated, the 
results are approximately the same regardless of the 
actual values of Re 0 and Re,,. This might provide a basis 
for estimating a priori the occurrence of flow reversal. The 
effect of varying rJh, which is significant only for small 
Reo/Re,. ,, is shown in Fig 7. Similarly the effect of varying 
Reo/Re,, is important only for small rJh. Details are given 
elsewhere a 6 

Conclusions 

Engineering predictions for turbulent source flow 
between stationary and corotating parallel discs have 
been presented. The predictions for the rotating case are 
the first local results available and the results for the 
stationary case extend earlier work substantially, 
particularly with the inclusion of the Bradshaw 
modification 5 for the extra strain rate caused by stream- 
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line divergence and the intermittency factor for reverse 
transition. Comparisons with data have been made where 
possible. Optimization of the turbulence models was not 
possible because of the inadequacy and scarcity of 
pertinent experimental information. However, the 
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Fig 3 Comparison of predictions of U(R,Z)/U(R,Zc) (solid 
line - tmi ; dashed line - tma ) and data ([~ Bakke et al 13) at 
several radial positions (R/R~)for rotating discs. Solid 
symbols denote unreliable data. 
(a) R e =850.7, Re,,, = 110.9, r , /h= 9.050; 
(b) Re e =850.7, Re,,,=221.6, r~/h = 9.050 ; 
(c) ReQ = 1276, Re,,,=500.9, r~/h=6.033 

turbulence models provide reasonable results when the 
empirical constants are selected by examination of similar 
flows. This conclusion seems to justify the original 
decision to treat the flow as a perturbation of a classical 
thin shear layer. 

The extra strain rate due to streamline divergence 
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Fig 5 Comparison of predictions of(P 0 -  P)/P0 (solid line 
- tmi; dashed line - tma) and data (1~ Bakke et a113)for 
ReQ = 1276, Re,,, = 500.9 and rs/h = 6.033 
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(R/Rs) for Ree/Re,,,=2 and r J h = 5  ( R%=200;  - - -  
Re e = 400; - - - - -  R% = 1000) 

was shown to have a significant effect, which is 
successfully modelled by including the simple Bradshaw 
modification in the turbulence models. The effects of disc 
rotation required an anisotropic turbulence model; 
reasonable success was achieved with turbulence model 
tma. A formula for treating reverse transition was 
developed. While this result is completely empirical, its 
use does extend the range of flow cases that can be treated 
reasonably. 
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Fig 7 Predictions (tma) of U at several radial positions 
(R/R~) for R%=1000 and Re,,,=500 for various r~/h 
( r~/h=5; - - -  r , /h= 10; - - - -  r,/h=20) 

Until more extensive and reliable empirical 
information is available, significant improvements over 
the present results in the prediction of turbulent source 
flow between parallel discs are not likely. With such 
information, the present models can be improved, or more 
sophisticated turbulence models, such as the k - e  model, 
can be used, to provide higher-quality predictions. 
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